家畜改良センター 技術マニュアル 19

ウシ生体卵子吸引・体外受精マニュアル

独立行政法人 家畜改良センター

はじめに

体外受精技術は、家畜の卵巣から卵子(未成熟卵子)を採取し、これを人工的環境下で成熟、受精させ、移植可能なステージまで発育させる技術である。牛の体外受精技術は、低コストでの胚の大量生産技術として、また、枝肉成績の判明した優良肉用牛の選択的増殖技術として、さらには核移植等の先端技術を行うにあたっての基礎技術として大変重要である。また、乳用牛の育種改良においても、世代間隔を短縮する技術として注目を集めており、平成16年度における体外受精胚の移植頭数は9,525頭に達した(農林水産省畜産振興課調べ)。

牛の未成熟卵子の採取方法は大きく分けて二通りあり、一つは食肉センターの屠体由来の卵巣から採取する方法。もう一つは Callsen ら 1)や Pieterse ら 2)によって開発された、超音波診断装置を用いることによる生体卵巣からの卵胞卵子の採取法(超音波ガイド・経腟生体卵子吸引法、以下 OPU と略す)である。Callsen ら 1)の方法は体表から卵巣を穿刺するものであり、Pieterse ら 2)の方法は、ヒト卵子の吸引採取法をウシに応用したもので、現在は主に Pieterse らの方法が取り入れられている。本マニュアルにおいても Pieterse らの方法についての手技を説明する。具体的には、7.5MHz の超音波診断装置のプローブに加工を施したものを腟内に挿入し、プローブに装着した吸引針により腟壁を通して卵巣の卵胞を穿刺し、吸引ポンプを接続した吸引針を通して卵胞液ごと卵子を吸引採取するものである。これら OPU で採取した卵子を体外受精 (IVF)し、胚を作出する方法 (OPU-IVF)は、過剰排卵処理によって正常胚が採取できない供胚牛や1頭の供胚牛から多数の胚を効率よく生産する技術として期待されている。

目次

はじめに

1.卵巣採取・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	体外受精・・・・・・・・・・・・・・・・・・・・・・・・・	1
3. 成熟培養・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1. 卵巣採取・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4.精子処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2. 卵子採取・検索・・・・・・・・・・・・・・・・・・	2
5. 媒精・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 成熟培養・・・・・・・・・・・・・・・・・・・・・・・	7
6 . 発生培養・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4.精子処理・・・・・・・・・・・・・・・・・・・・・・	11
7.発生培養開始後 48 時間目の操作・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.媒精・・・・・・・・・・・・・・・・・・・・・・・	15
8. 継続培養・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6. 発生培養・・・・・・・・・・・・・・・・・・・・・・	16
9. 体外受精由来胚盤胞の凍結・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7. 発生培養開始後 48 時間目の操作・・・・・・・・・・・	17
23 超音波ガイド・経腟生体卵子吸引技術(OPU)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 . 継続培養・・・・・・・・・・・・・・・・・・・・・	18
超音波ガイド・経腟生体卵子吸引技術(OPU)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9.体外受精由来胚盤胞の凍結・・・・・・・・・・・・・・	19
超音波ガイド・経腟生体卵子吸引技術(OPU)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10. 凍結保存胚の融解・・・・・・・・・・・・・・・・・・	23
<超音波診断装置を用いた卵巣観察>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
<超音波診断装置を用いた卵巣観察>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	超音波ガイド・経腟生体卵子吸引技術(OPU)・・・・・・・・	26
1.直腸用のプローブ(リニアタイプ)を用いた卵巣観察・・・・26 ・卵巣観察におけるイメージ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		26
・卵巣観察におけるイメージ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.直腸用のプローブ(リニアタイプ)を用いた卵巣観察・・・・	26
2. 経腟プローブ (コンベックスタイプ)を用いた卵巣観察・・・ 29 ・卵巣観察におけるイメージ・卵巣の映り方、映し方・・・・ 30 ・卵巣の保定方法・・・・・・・・・・・・・・・・ 31 < 卵子吸引 >・・・・・・・・・・・・・・・・・ 34 1. 採卵針の形状および卵胞液の吸引方式・・・・・・・ 34 2. 腟壁への穿刺・・・・・・・・・・・・・・・ 35 3. 卵胞の移動・・・・・・・・・・・・・・・・ 35 4. 吸引圧・・・・・・・・・・・・・・・・・・ 35 5. 連続した卵子吸引・・・・・・・・・・・・・・ 36 6. 複数の卵胞吸引・・・・・・・・・・・・・・・ 39 1. 器具機材・・・・・・・・・・・・・・・・・ 39 2. 卵子保存液・・・・・・・・・・・・・・・・ 39 3. 生体卵子吸引の手順・・・・・・・・・・・・・ 39 4. 採取液の濾過・・・・・・・・・・・・・・・・・・ 39		26
・卵巣観察におけるイメージ・卵巣の映り方、映し方・・・・30 ・卵巣の保定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		29
・卵巣の保定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		30
1.採卵針の形状および卵胞液の吸引方式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		31
2. 腟壁への穿刺・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<卵子吸引>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
3. 卵胞の移動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.採卵針の形状および卵胞液の吸引方式・・・・・・・・・・	34
4.吸引圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2. 腟壁への穿刺・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
5.連続した卵子吸引・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.卵胞の移動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
6.複数の卵胞吸引・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4.吸引圧・・・・・・・・・・・・・・・・・・・・・・・・	35
<生体卵子吸引の実際>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.連続した卵子吸引・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
<生体卵子吸引の実際>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6. 複数の卵胞吸引・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
1. 器具機材・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
2. 卵子保存液・・・・・・・・・・・・・・・・・ 39 3. 生体卵子吸引の手順・・・・・・・・・・・・・ 39 4. 採取液の濾過・・・・・・・・・・・・・ 41		
3. 生体卵子吸引の手順・・・・・・・・・・・・ 39 4. 採取液の濾過・・・・・・・・・・・・・ 41		
4.採取液の濾過・・・・・・・・・・・・・・・・ 41		
	5.卵子の検索・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44

目次(続き)

各	種溶	液	の	調	製	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
	卵子																													
	精子																													
	発生																													
	体外																													
<	培養	液	全	般	>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
家	畜改	良	セ	ン	タ	_	に	お	け	る	培	養	液	お	ょ	び	試	薬	—	覧	•	•	•	•	•	•	•	•	•	67
参	考文	献	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	70
ぁ	とか	べ	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	71

体外受精技術 (In Vitro Fertilization; IVF)

本技術は、ウシ屠体の卵巣から卵子(未成熟卵子)を採取し、成熟、受精および移植可能なステージまで発育させる技術である。OPU-IVFとの相違点は卵子の採取方法であり、成熟培養以降はほぼ同様の手法を採用する。

表1.体外受精スケジュール

	手 順	主な内容
	卵巣採取 	生理食塩水(25)で保存、運搬(8時間以内)
- 2日目	↓ ↓(卵巣保存)*	* BSE 検査の結果が出るまで、生理食塩水(20) で約 20 時間保存する
- 1日目	卵子吸引 卵子検索	1%CS 加 乳酸加リンゲル液
- 1 48	成熟培養	5%CS 加 TCM-199 38.5 、5%CO ₂ in air、20 時間
	精子処理	90% パーコール液 精子洗浄液(10mM ハイポタウリン、10u/ml ヘパリン加 BO 液) 精子希釈液(20mg/ml BSA 加 BO 液) 卵子洗浄液(10mg/ml BSA 加 BO 液)
0日目	媒 精	精子濃度(3×10 ⁶ /ml) 38.5 、5%CO ₂ in air、6 時間
	発生培養	5%CS 加 CR1aa 38.5 、5%CO ₂ in air、9 日間
2日目	初期発生検査	初期発生検査、卵丘細胞からの剥離
3~6日目	形態観察	24 時間毎にシャーレを振盪、形態観察
7~9日目	胚盤胞発生検査	7~9日目までの胚盤胞の発生検査 胚盤胞の移植、凍結

1.卵巢採取

(1)準備

生理食塩水を調製し、オートクレーブで滅菌後室温保存する。または市販の生理食塩水を用いる。

魔法瓶に沸騰水を入れ消毒する。

25 に保温した生理食塩水 1 に当たり抗生物質 (ゲンタマイシン)を 1 ml 添加する。 魔法瓶に生理食塩水を入れ、外科バサミ、ピンセット、ビーカー、滅菌紙タオル、滅菌ゴム 手袋、滅菌済みの金属製ザル、白衣、長靴、その他必要なものを食肉処理場へ持参する。

(2)卵巢採取

卵巣を金属製ザルに移し、別に用意した生理食塩水で血液等を洗い流す。 洗浄した卵巣を魔法瓶内の生理食塩水に浸漬して実験室に持ち帰る。

(3) BSE について

BSE の検査結果まで卵子採取できない場合は、20 に設定したクールインキュベーター内で 一晩保存する。

2.卵子採取,検索

一般的に卵巣には1卵巣当たり平均20~30個の小卵胞(直径2~6mm)があり、この小卵胞内の卵子は成熟前の卵核胞期にある。これらの未成熟卵子を採取し、成熟培養後体外受精に用いる。卵子の採取法には、大きく分けて吸引法と細切法がある。吸引法は注射筒を用いて、卵胞から卵胞液と共に卵子を吸引採取する方法である。細切法はメスまたは剃刀を用いて、卵巣皮質を切り刻み卵胞を破砕して卵子を採取する方法である。

写真 1. 食肉センター由来卵巣

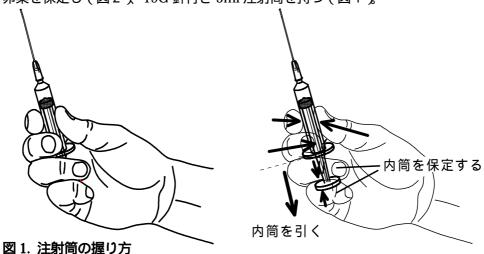
1 卵巣当たりから採取できる卵子数は細切法が吸引法と比較して多いが、吸引法は細切法に比べて処理に費やす時間が短く、また発生率が若干高いことが挙げられる。本マニュアルでは、吸引法について説明する。

(1)準備

1%CS 加乳酸加リンゲル液を当日調製し、室温で保存しておく。 以下の器具等を用意する。

滅菌紙タオル、滅菌ゴム手袋、ピンセット、注射筒 (5ml)、注射針 (19G針先鈍角)、恒温槽 (30 に設定)、シャーレ (底面外側に 1cm 間隔で格子状に線を入れたもの)、パスツールピペット、ビーカー、手術用メスまたは剃刀。

(2)吸引採取


滅菌ゴム手袋を着用し、卵巣を生理食塩水で 2~3回洗浄後、ビーカーに入れ室温で保持す る。

ピンセットまたは茶こし器等で卵巣をビーカーから取り出し、外科バサミで余分な組織 (卵管、脂肪など)を切り取り、滅菌紙タオルで卵巣を清拭して、血液、生理食塩水を除去する。

写真 2. 洗浄後の卵巣

卵巣を保定し(図2) 19G 針付き 5ml 注射筒を持つ(図1)

卵巣皮質から針を刺し、直径 2~6mm の小卵胞中の卵子を卵胞液と共に吸引する(図3)。この時、一度針を刺したら、針を抜かずできるだけ多くの卵子を吸引する。

* 卵子吸引に使用する注射筒は、一度洗浄して注射筒の内側のオイルを除去後滅菌したものを用いる。

図2.卵巣の保定方法

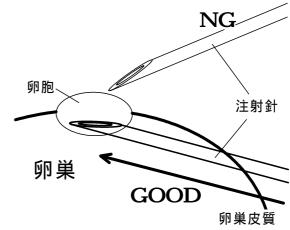


図3.卵巣への穿刺方法

卵巣 1 個の吸引が終了したら、50ml の遠心管内へ吸引採取した液を静かに入れる。急激に入れると卵丘細胞が剥離する恐れがある。

全ての卵巣の処理が終了したら、遠心管内の 上清をアスピレーター等で除去し、1%CS加 乳酸加リンゲル液を加える(図4)。

と同様に上清を除去し、1%CS 加乳酸加リンゲル液を加え、同様の操作を繰り返す(図4)。

顕微鏡下で観察しやすいように上清が透明になったら、90mmシャーレに沈殿物と上清を移す。その際、遠心管内に採取卵子が残らないように、1%CS 加乳酸加リンゲル液で共洗いする(図5)。

卵巣数が少ない場合は、60mm シャーレに直接吸引採取した液を入れる。卵子や細胞が沈殿しても採取液が透明でなく、顕微鏡下で観察しにくい場合は、 ~ と同様に 1%CS 加乳酸加リンゲル液を用いて上清を透明にする。

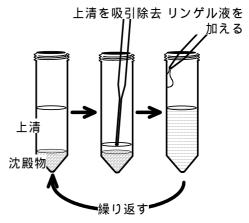
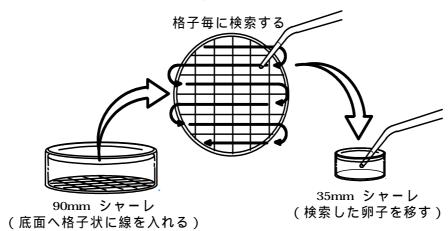
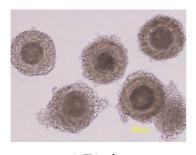


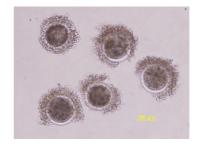
図4.吸引液の洗浄

図5.シャーレへの移動

(3)卵子検索

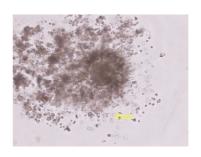
90mm シャーレを顕微鏡下に静置する。 図のように格子毎に順番に検索する。


図 6. 卵子検索

検索した卵子は、加工したパスツールピペットで吸引し、1%CS 加乳酸加リンゲル液の入った 35mm シャーレに移す。

35mm シャーレに回収した卵子の選別(鑑別)を行い、以下のように分類する。


Aランク

Bランク

Cランク

Dランク

写真 3. 卵子鑑別

A ランク: 卵丘細胞が3層以上または透明帯周囲全体に付着しているもの B ランク: 卵丘細胞が2層以下または透明帯周囲に1/3以上付着しているもの

C ランク:完全な裸化卵子またはBより卵丘細胞の付着が少ないもの Dランク:卵丘細胞が膨化しているか蜘蛛の巣状に変性しているもの 通常、培養試験に供する卵子はAおよびBランクであるが、後継牛生産を目的とし、出来る限り多くの胚盤胞を得たい場合は、CおよびDランクの不良卵子も培養する。尚、Dランクでも、細胞質が正常なものについては、胚盤胞までの発生率はA、Bランクに劣らない。逆に卵丘細胞がA、Bの形態であっても、細胞質が異常なもの(変性卵:色が薄い、細胞膜が不鮮明等)は胚盤胞まで発育しない。

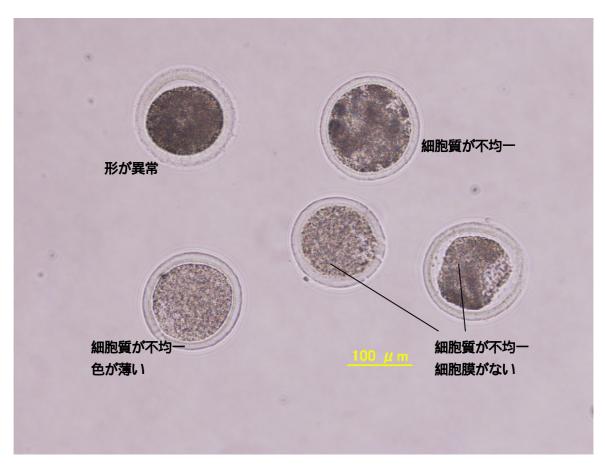


写真 4. 変性卵

3. 成熟培養

(1)準備

培養液 (5%CS 加 TCM-199) を前日または当日調整する。

35mm シャーレ (ファルコン:3001 又は 1008) にマイクロピペットで 300µl のスポットを作製する。

スポットの形を崩さないように流動パラフィンをシャーレの端から流し込み(4.5ml) スポットをカバーする。

スポットにマイクロピペットで 300µl の培養液を追加し、総量を 600µl とする。

ドロップが完全にカバーされているか確認する。表面が流動パラフィンから出ている場合は 流動パラフィンを 2、3 滴追加する。

使用時まで CO₂インキュベーターで 2 時間以上前培養する (ガス平衡する)。

残りの培養液を 35mm シャーレに 2.5ml ずつ分注し、流動パラフィンでカバーする(2ml)。

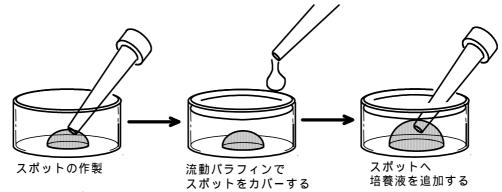


図 7. ドロップ作製法 (600山)

*培養する卵子が少ない場合は、 100μ l のドロップを 35mm シャーレに $4\sim5$ 個作製する。 100μ l のドロップは、はじめに微小滴のスポット (約 10μ l) を作った後、流動パラフィンでカバーし (4.5ml)、スポットに 90μ l の培養液を追加し、総量 100μ l とする。

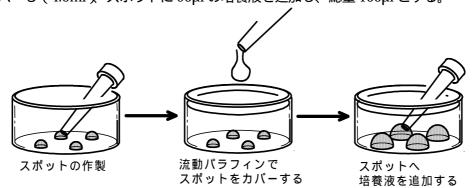


図 8. ドロップ作製法 (100 μl)

* いずれの場合もチップの先端がシャーレの底面に触れないようにすること

(2)成熟培養

選別した未成熟卵子を1%CS加乳酸加リンゲル液の入った35mmシャーレで1回洗浄する。 5%CS 加 TCM-199 の入った35mm シャーレで2回洗浄する。

成熟培養用のマイクロドロップに以下の割合で入れる。

600µl ドロップ・・・80 個

100µl ドロップ・・・10~20個

38.5 、 $5\%CO_2$ in air の気相下で 20 時間培養する。

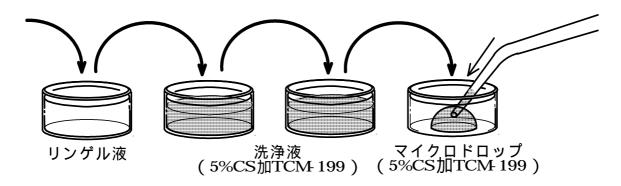


図 9. 成熟培地への卵子の導入

*洗浄について

受精卵移植業務における「洗浄」とは、胚(卵子)を異なる培養液に移す際に胚(卵子)の周囲環境から、それまでの培養液の影響を完全に取り除くことにある。成熟培地への卵子の導入を例とすると、1%CS 加乳酸加リンゲル液を成熟培地に持ち込まないように、洗浄液(5%CS 加 TCM-199)で卵子の周囲環境を 5%CS 加 TCM-199 に置き換えて(同時に剥離した卵丘細胞等を取り除く) 成熟培養を行うこととなる。

例) 成熟培地への卵子の導入

卵子は 1%CS 加乳酸加リンゲル液中に存在する。

次の培養液である 5%CS 加 TCM-199 を洗浄用シャーレからパスツールピペットで吸引する。 1%CS 加乳酸加リンゲル液中の卵子に、洗浄液を噴きかける。

洗浄液(5%CS 加 TCM-199)で希釈した液と卵子を吸引する。この時はまだ卵子の周囲環境は完全に 5%CS 加 TCM-199 に置き換わっていない。

の際、吸引する液量は少なく且つ多くの卵子を吸引する。これは、出来るだけ卵子のみを移し、洗浄液中に 1%CS 加乳酸加リンゲル液を持ち込まないようにするためである。 卵子を洗浄液中に移す。

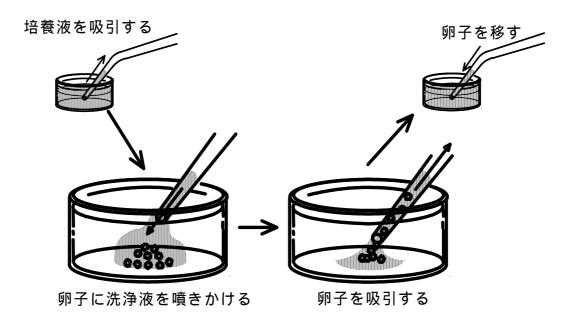


図 10.洗浄液への卵子導入

洗浄液シャーレの中で同様の操作を繰り返す。卵子とは別の位置から培養液を吸引しておき、 卵子に噴きかける。この時卵子が転がるように勢いよく噴き、卵子周辺の培養液を置き換え る。

散らばった卵子を吸引してまとめ、シャーレ内の別の位置に移す。

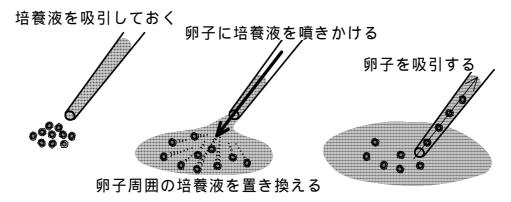


図11.シャーレ内での卵子洗浄

、 の操作を各シャーレの A、 B、 C および D の箇所で行い、最終的に成熟培地へ移す。 二枚目の洗浄用シャーレの D での卵子の周囲環境に 1% CS 加乳酸加リンゲル液は存在せず、 5% CS 加 T C M-199 のみとなるようにする (図 12)。

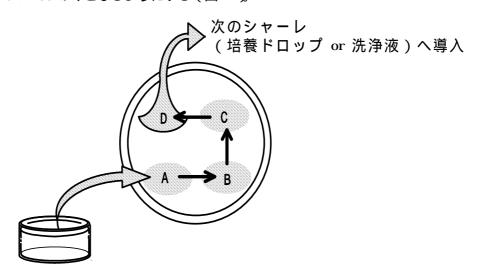


図12.シャーレ内での卵子移動

* この操作は体外受精以外でも基礎的な操作となるため、その概念および手法を理解しておく必要がある。

4.精子処理

(1)準備

以下の培養液を当日調製する。

- a) 90%パーコール液 (3ml を遠心管に入れ、CO2インキュベーター内で前培養)
- b) 精子洗浄液: 10mM ハイポタウリン、10u/ml ヘパリン添加 BO 液
 - ・瓶等に入れ、CO2インキュベーター内で前培養
- c) 精子希釈液: 20mg/ml BSA 添加 BO 液
 - ・遠心管等に入れ、CO2インキュベーター内で前培養
- d) 卵子洗浄液: 10mg/ml BSA 添加 BO 液
 - ・卵子洗浄液で 35mm シャーレ (NUNC 153066) に 5μ l のスポットを 4 つ作製し、流動パラフィンでカバーして CO_2 インキュベーター内で前培養する。
 - ・残りの卵子洗浄液を 35mm シャーレに $2.5 \sim 3$ ml 分注し、 CO_2 インキュベーター内で前培養する。
- e) 3%NaCl 水溶液 (990µl を試験管に入れて室温で保持)

以下の器具機材を用意する。

凍結精液 1~2 本、血球計算盤 2 枚、遠心分離器、遠心管、アスピレーター、ストローカッター、メスピペット、アルコール綿花、マイクロピペット、恒温槽、カウンター、ボルテックスミキサー

* 遠心管およびメスピペットは、予め加温盤や恒温槽を用いて37 に保温しておく。

(2) 凍結精液の融解と生存精子の選択

* 温度変化による精子活性の低下を避けるため、媒精地を作製するまでは全ての操作におい て常に遠心管を保温する。

凍結精液を37 の温湯で融解し、遠心管中のパーコール液の表面に重層する。 遠心管を 740G (2100rpm)で 10 分間の遠心分離を行う。

上清をアスピレーターで吸引除去する(なるべくパーコール液は残さないように)。

図 13. 凍結精液の融解と生存精子の選択

(3)精子洗浄

精子が入った遠心管に精子洗浄液 6ml を加え、ピペッティングでよく混和する。 遠心管を 540G (1800rpm) で 5 分間の遠心分離を行う。

上清をアスピレーターで吸引除去する。

マイクロピペットで 500μl 前後の精子洗浄液を加え、ピペッティングをして精子を再浮遊さ せる(精子浮遊液)。

のマイクロピペットで精子浮遊液を吸引し(500µl)、さらにマイクロピペットのダイヤルを 回して残りの精子浮遊液を吸引し液量を求める

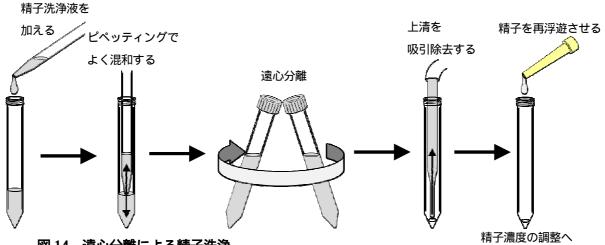


図14.遠心分離による精子洗浄

(4)精子数のカウント

洗浄後の精子浮遊液内の精子数を計算するため、精子数計算溶液を調製する 3%NaCl 溶液 990µl に精子浮遊液 10µl を加えて 100 倍希釈する。 ボルテックスミキサーを用いて均等に混和する。

精子数のカウント

精子数計算溶液中の精子濃度を求めるため、血球計算盤を用いて精子数をカウントする。 計算室内の 1×1mm のエリア中にある精子をカウントする。同じ精子を 2 回カウントしな いようにする。

血球計算盤は2枚用意し、その平均精子数を以下の計算に用いる。

- *血球計算盤は、目盛りの刻まれ方と計算室の深さによっていくつかの種類がある。
 - 一般的にトーマ(Thoma)が多く用いられるが、ノイバウエル(Neubauer)やビルケルチュルク (Burker-Turk)も計算室の深さがトーマと同じく 0.1mm で、中央部に 1×1 mm の計算室があるので 媒精時の精子数カウントに使用可能である。

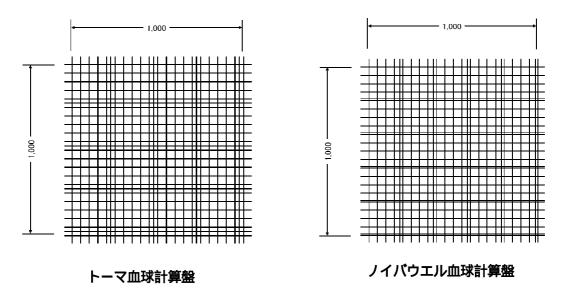


図 15.トーマおよびノイバウエル血球計算盤の計算室 (1×1mm のエリア)

(5)精子濃度の調製

精子数計算溶液調製のために 10μl 吸引した後の精子浮遊液の液量を「Sus」として以下の計算 に用いる

第一希釈:精子濃度を6×10⁶/ml に調製

- 1) 計算室内の精子数 (Ave) と精子浮遊液の液量 (Sus) から精子浮遊液の精子濃度を求める
- 2) 精子濃度が 6×10⁶/ml になるように精子洗浄液を加えて希釈する *1)と 2)をまとめた計算式が以下の通り

精子浮遊液に加える精子洗浄液量 (ml) = (Ave / 6) × Sus - Sus

Ave = 精子数 (2回の平均) Sus = 精子浮遊液量 (ml)

計算後、精子浮遊液に精子洗浄液を加える・・・・・第一希釈液

第二希釈:精子濃度を 3×10⁶/ml (最終濃度)に調製

- 1) 精子濃度が $3\times10^6/ml$ になるように精子希釈液を加えて希釈する
- 2) 調製する精子濃度は第一希釈液の 1/2 の濃度なので、第一希釈液と等量の精子希釈液を加える(等倍希釈)

第一希釈液量(ml) + 第一希釈液と等量の精子希釈液量(ml) = 精子希釈液量(ml)

第一希釈液に精子希釈液を加える・・・・・第二希釈液

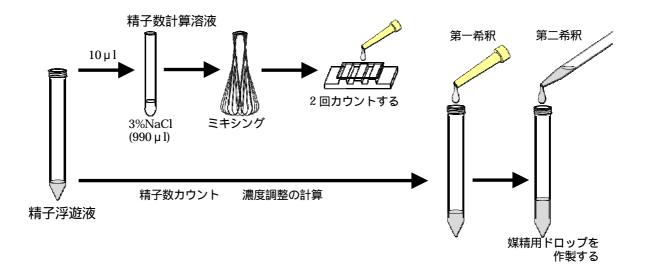


図 16. 精子数の計算および希釈

以上、第一、第二希釈の処理を経て各試薬および精子濃度が表のようになる。

表2. 各試薬およびBSA 濃度

		- -						
試薬	調 類 精子洗浄液	製 時 精子希釈液	第一希釈液	第二希釈液 (媒精地に使用)				
BSA	-	20mg/ml	-	10mg/ml				
ハイホ゜タウリン	10mM	-	10mM	5mM				
小゜リン	10u/ml	-	10u/ml	5u/ml				
精子濃度	-	-	$6 \times 10^6 \text{cell/ml}$	3×10^6 cell/ml				

^{*} 精子処理時の最適な最終精子濃度およびヘパリン濃度は種雄牛毎に異なるため、予め検査する必要がある。また、この方法で初期分割率が低い場合は、媒精時間の延長もしくは精子濃度を上げる等を行い、初期分割率を改善する。

5. 媒精

(1)成熟卵子と精子の共培養

第二希釈液(精子濃度 $3\times10^6/\text{ml}$)を、予め CO_2 インキュベーター内でガス平衡していた媒精用シャーレ (卵子洗浄液で $5\mu\text{l}$ のスポットを作ったもの) に $95\mu\text{l}$ ずつ追加し、 $100\mu\text{l}$ の媒精用ドロップを作製する。

成熟培養した卵子を卵子洗浄液で2回洗浄する。

洗浄した卵子を媒精用ドロップに入れる(約20個/1ドロップ)。この時、媒精用ドロップ に持ち込む卵子洗浄液によって精子濃度が低下するのを防ぐため、できるだけ卵子のみを移 すようにする。

38.5 、5%CO₂ in air の CO₂インキュベーター内で 6 時間培養する。

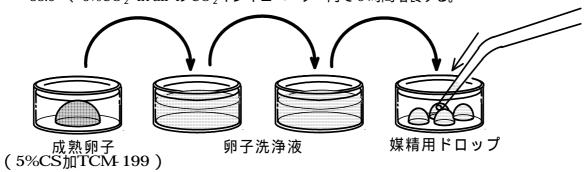


図 17. 媒精地への成熟卵子の導入

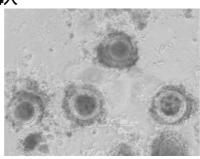


写真 5. 媒精中の卵子

6. 発生培養

(1)培養液

培 養 液:5%CS加CR1aa (+0.25mg/ml リノール酸アルブミン)*

培養方法:卵丘細胞細胞との共培養または非共培養(発生率に差はない)

38.5 、 $5\%CO_2$ in air

80個/600μlまたは20個/100μl

* 発生培養液について、5%CS 加 TCM-199 と 5%CS 加 CR1aa を比較した場合、胚盤胞発生率は 5%CS 加 CR1aa の方が高くなるが、耐凍性で劣ることがわかっている (今井ら³)。 そのため、5%CS 加 CR1aa に 0.25mg/ml リノール酸アルブミンを添加することにより、胚盤胞発生率を低下させることなく 5%CS 加 TCM-199 と同等の耐凍性を確保できる(今井ら⁴)。

(2) 媒精後の卵子の洗浄

媒精後の卵子は、卵丘細胞および精子が付着している。これらを発生培養に持ち込むことによって多精子侵入等の危険性が高くなるので、卵子を洗浄する際これらの細胞をある程度剥離する必要がある。

発生培養液を用いて洗浄する。

卵子を媒精用ドロップから取り出し、洗浄液(2 枚)でピペッティングにより洗浄する。透明帯の外径よりやや太めのピペットを作製し、複数の卵子を一緒にピペッティングし、卵丘細胞を剥離する。

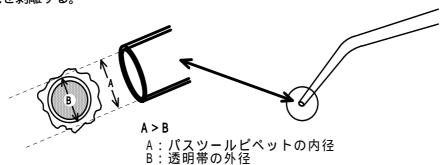


図 18. 卵丘細胞剥離用ピペットの作製

卵子を発生培養のドロップに移す。

媒精日を0日目として9日間発生培養する。

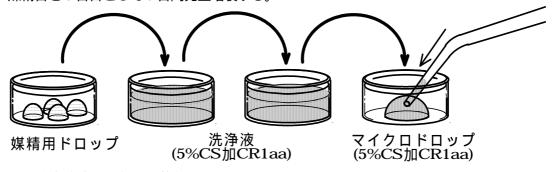
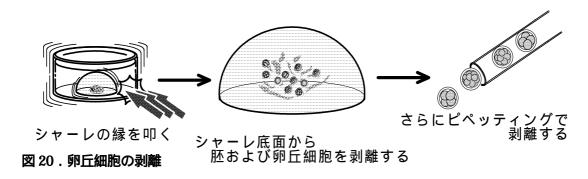


図 19. 発生培地への卵子の導入

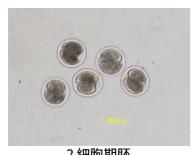
7.発生培養開始後48時間目の操作

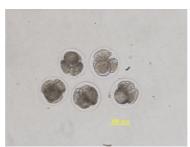

(1)卵丘細胞からの剥離

シャーレの縁を叩き、底面にシートしている卵丘細胞によって取り囲まれている胚をピペッ ティングにより剥離する。

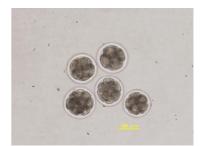
胚の透明帯周囲に付着している卵丘細胞を、透明帯の外径よりやや太めに作製したパスツー ルピペットを用いて剥離する。

この時、卵丘細胞が盛り上がってコロニーとなっている場合は、パスツールピペットでシャ ーレの底面より剥離し取り除く。


* いずれの操作も(特に)シャーレの底面に傷を付けないようにする。

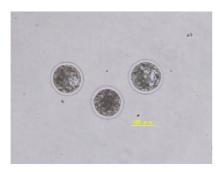

(2)初期発生検査

胚の発育状態(卵割数)により、「変性卵」、「1細胞期胚(未受精卵)」、「2-4細胞期胚」および 「5細胞以上期胚」のステージに分類する。


* できるだけ短時間で終了する(1枚につき3~4分程度)。初期発生検査後、継続培養する。

2細胞期胚

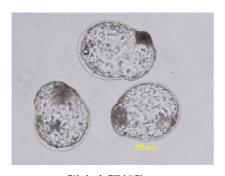
4細胞期胚

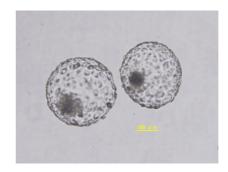


細胞期胚

写真 6. 初期発生検査時の胚

8.継続培養


- ・培養中 24 時間毎にシャーレの縁を叩き、胚が底面の卵丘細胞に接着し、取り込まれ押しつぶされるのを防ぐ。
- ・媒精日を0として7~9日目まで胚盤胞の発生を検査する。


胚盤胞

拡張胚盤胞

脱出中胚盤胞

脱出胚盤胞

写真 7. 胚盤胞発生検査

9. 体外受精由来胚盤胞の凍結

(1)凍結保存液

1.5M エチレングリコール + 0.1M シュークロース + 20%FCS 加 m-PBS 凍結保存液を 4 穴ディッシュ等に分注する (750μ l ~ 1ml)。

以下の器具機材を用意する。

胚凍結用ストロー、シール用パウダー、凍結機用ストローラック、ピンセットまたは鉗子等 プログラムフリーザーを起動し、-7 に保持しておく(一時停止)。

(2) 平衡およびストローへの導入

胚を凍結保存液に導入する。

1~2分後、ストローに導入する。導入方法は、図22のように液層と気層を作製する。

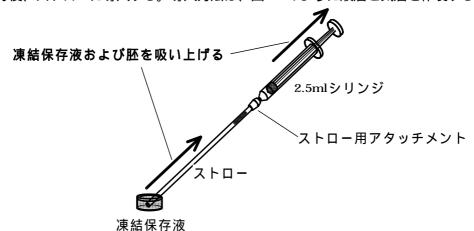
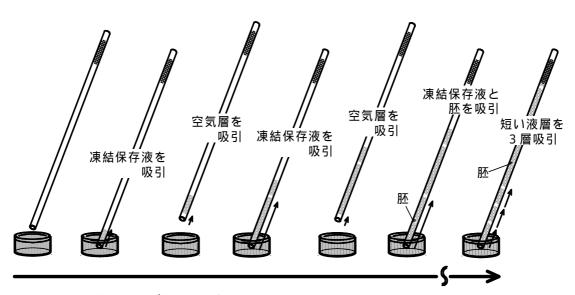



図21.ストローへの導入操作

(35mmシャーレまたは4穴ディッシュ)

図 22.液層および気層の作製方法

ストロー先端をシール用パウダーで栓をする。 実体顕微鏡下で胚の位置が液層の中央であるか確認する。 中央ではない場合、ストローを縦に置き、胚を移動させる。

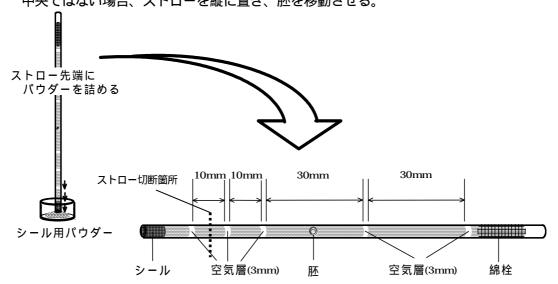
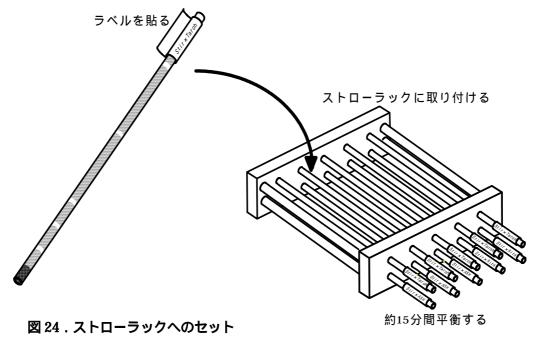



図23.液層および気層の作製例

ストローラックに取り付け、約15分間平衡する。

* この 15 分間は、胚盤胞を凍結保存液に投入してから-7 のプログラムフリーザーに投入するまでの時間とする。つまり、10 分程度はストロー内で平衡することとなる。

(3)プログラムフリーザーへの投入および植氷

平衡後、ストローラックをプログラムフリーザーのアルコール層に投入し、プログラム を開始する。

プログラム開始 2 分後、液体窒素で冷却したピンセット等で、図 25 のようにストローに植氷する。

-7 で保持している 15 分間のうちに、胚が入っている液層が植氷されているか確認する。

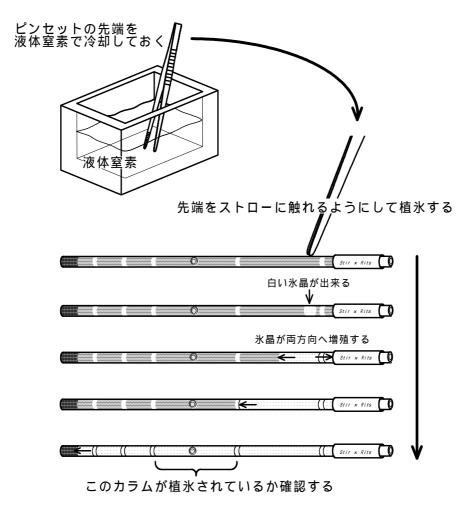
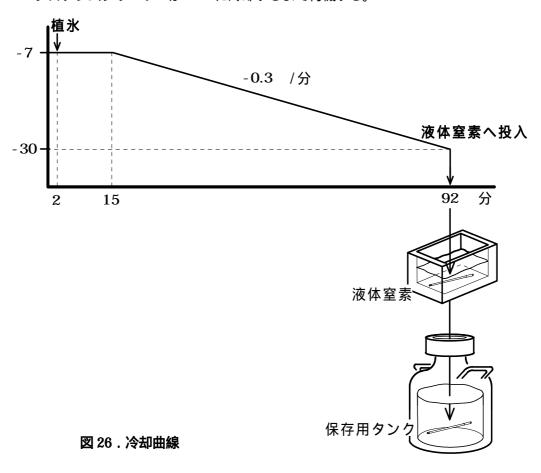



図 25. 植氷方法

植氷速度が遅いようであれば、カラムが植氷されるまでプログラムを一時停止にする。

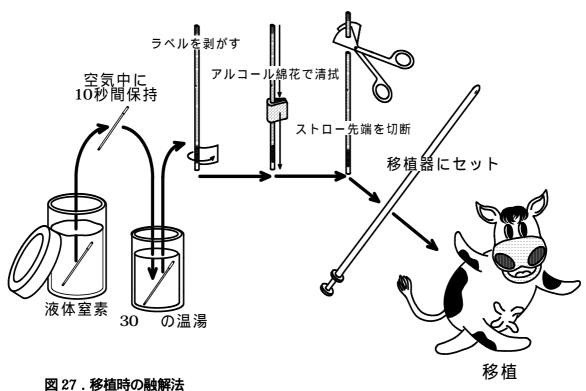
プログラムフリーザーが-30 に冷却するまで待機する。

-30 になったら、ストローをデュワー瓶または発泡スチロールの容器等に入った液体窒素中に投入する。

保存用のタンクに入れる。

10. 凍結保存胚の融解

移植時の融解方法


(1)準備

以下の器具機材を用意する。 移植器、ストローカッター、30 の温湯、アルコール綿花

(2)融解および移植

ストローを液体窒素から取り出し、10 秒間空気中で保持した後、30 の温湯に投入して融解する。

ストロー内の結晶が消えたら温湯から取り出し、アルコール綿花で清拭後、図 23 (20 頁) の点線部をストローカッターで切断し、移植器に装着して移植に供する。

培養による胚の生存の確認

(1)準備

20%FCS 加 m-PBS を調製し、4 穴ディッシュ等に分注する。ディッシュはインキュベーター内で 38.5 に保温する。

20%FCS + 0.1mM βME (β-メルカプトエタノール) + TCM-199 を調製し、洗浄用および培養用のシャーレを作製して CO₂ インキュベーター内で前培養する。

90mm シャーレを加温盤等で 38.5 に保温する。

(2)融解および培養

ストローを液体窒素から取り出し、10 秒間空気中で保持した後、30 の温湯に投入して融解する(移植時と同様)。

ストロー内の結晶が消えたら温湯から取り出し、アルコール綿花で清拭後、図 23 (23 頁) の点線部をストローカッターで切断し、ストローの中身を保温しておいた 90mm シャーレに 移す。

顕微鏡下で胚を確認後、20%FCS 加 m-PBS に移し 10 分間平衡する。

20%FCS + 0.1mM 6ME + TCM-199 で洗浄し、CO₂ インキュベーター内で培養する。

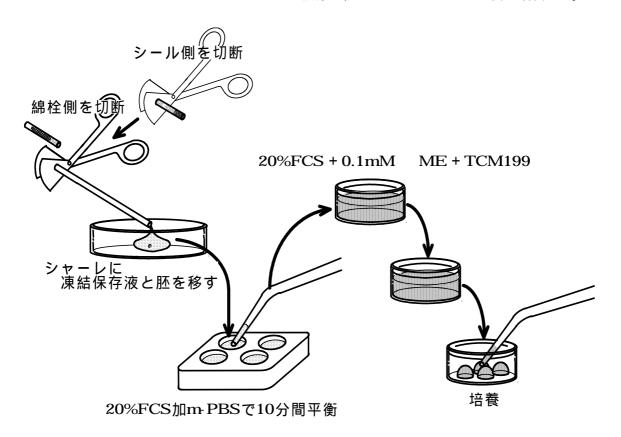


図 28. 培養時の融解、希釈および培養法

発生検査は24h毎に行い、以下のステージを観察する。

表3.培養経過時間と観察ステージ

培養時間	24h	48h	72h	96h
観察ステージ	拡張胚盤胞	脱出中胚盤胞	脱出胚盤胞	脱出胚盤胞